查看原文
其他

2016-2023深度整理!双载荷ADC的进阶之路

BiG专栏 BiG生物创新社
2024-10-13


 * 后台回复【 双载荷ADC 】可获取本文相关资料!


作者|知乎_西山含黛


抗体药物偶联物(Antibody-Drug Conjugate,ADC)结合了单克隆抗体的肿瘤靶向特异性和细胞毒性药物(Warhead/Payload)的强效细胞杀伤活性,通过精心设计的化学接头(Linker)将二者偶联在一起,在实现精确定位的同时展现出强大的抗肿瘤活性,以改善Warhead的治疗窗口[1]。基于ADC药物的临床成功[2],研究人员对设计新样式的ADC的兴趣激增。除了ISAC[3]、IM-ADC[4]、PROTAB[5]、LYTAC[6]等外,双载荷ADC药物的构建也在不断取得进步。


双载荷ADC通过不同的构建方法对其药抗比(Drug-Antibody Ratio, DAR)进行灵活调整,可以根据疾病类型及治疗目的微调ADC的理化特性、功效和毒性特征,充分利用ADC双药递送的优势,提高ADC活性;同时,在原子经济学的角度上可以减少所需试剂的摩尔用量构建具有高度同质性的双载荷ADC药物,在提高疗效的同时降低生产成本。


目前,用于构建双载荷ADC的方法还是主要集中于第二代偶联技术[1]:工程化的反应性半胱氨酸残基、链间二硫键重塑技术、非天然氨基酸介导的点击化学、酶辅助连接、糖型重塑和糖缀合等[7]。文献报道的双载荷ADC的构建多是上述偶联方法的组合,对DAR值进行调整,接下来小编将简单介绍2016-2023年部分文献报道的双载荷ADC及其类似物的构建。


  01  


Engineered reactive cysteine residue

& Disulfide re-bridging


由于半胱氨酸(Cysteine,Cys)侧链基团的特殊性-巯基基团(-SH),其与含有马来酰亚胺基团(-Mal)的Payloads偶联以实现对抗体的位点选择性修饰,二者的迈克尔加成反应选择性高、快速,同时条件也较为温和[8]。目前,利用Cys构建ADC的方法主要包括工程化的反应性Cys残基(Engineered reactive cysteine residue)和抗体自身链间二硫键重塑(Disulfide re-bridging)技术。工程化的反应性Cys的引入早见于Genentech公司的ThioMab™技术,通过还原-氧化-偶联三步反应构建DAR值为2的ADC药物(实际DAR值1.7~1.9)[9],该方法目前有较多公司在其基础上进行优化,例如Zymeworks[10],Byondis[11]等。二硫键重塑技术主要是利用TCEP/DTT还原IgG的链间二硫键,暴露出可用于偶联反应的Cys-SH。


为了充分利用有限的结合位点,西雅图遗传学公司Peter D. Senter课题组[12]利用双Cys多路载体(Dual Cysteine multiplexing carrier)引入两个被保护的半胱氨酸基团[Cys (SiPr)+Cys (Acm)],结合不同的脱保护反应构建双载荷ADC;同时该载体还包含PEG24片段,可在不伴随疏水性诱导的ADC聚集的情况下实现高载药量(DAR: 8+8);用该方法构建的cAC10-(2+3)在小鼠异种移植模型(DEL-BVR细胞系)中展现出良好的抗肿瘤活性(图1)。

 

图1. 双载荷ADC的构建及其抗肿瘤活性评价


上述方法利用线性Linker引入双载荷ADC,MedImmune Inc.则利用支链Linker引入双载荷(图2)[13]。偶联所需Cys插入到Trastuzumab/NIP228 (Ctrl Ab)的239位,引入含有炔基和酮基的Linker构建Ab-Linker平台,使其与NH2-O-vc-PAB-MMAE、N3-PEG8-PBD dimer (SG3457)反应得到双载荷ADC,其针对HER2+的乳腺癌细胞系展示出良好的细胞毒性。

 

图2. 利用支链Linker构建双载荷ADC


剑桥大学David R. Spring课题组[14]利用二硫键重塑技术进行双载荷ADC的构建,以带有特定反应集团和FITC的二乙烯基嘧啶(divinylpyrimidine, dfDVP)衍生物与Trastuzumab的链间二硫键进行反应,再经铜催化的叠氮炔基环加成反应[Copper (I)-catalyzed Azide Alkyne Cycloaddition,CuAAC]得到DAR值为3 (针对MMAE而言)的Tras-FITC-MMAE(图3左),对SK-BR3 (HER2+)细胞表现出剂量依赖性细胞毒性。尽管筛选了其他的几种反应条件,但仍然无法获得DAR>3的Tras-FITC-MMAE,该课题组认为所连接的接头大小仅允许在每个抗体的铰链区连接一个药物分子,由于已经结合的大尺寸连接子-有效载荷产生空间位阻,使得MMAE仅有一个与目的基团进行偶联。

 

图3. dfDVP用于双载荷ADC的构建(左)及其优化(右)


在上述研究的基础上,该课题组对dfDVP Linker进行优化(图3右),引入可以发生逆电子需求D-A反应(Inverse electron-demand Diels–Alder reaction, IEDDA[15])的甲基环丙烯基团(蓝色部分)和可以发生环张力驱动叠氮炔基环加成反应(Strain-Promoted Alkyne-Azide Cyclo-additions, SPAAC[16])的双环[6,1,0]壬炔(-BCN,绿色部分),重塑抗体二硫键后,将产物与MMAE-PEG4-N3和TAMRA-PEG4-Bn-Tetrazine反应,构建新型双载荷ADC[17];同样,该种ADC的活性也是在SK-BR3 (HER2+)细胞中进行验证,IC50为40 pM,其对HER2阴性的MCF7细胞无明显的细胞毒活性。


类似于dfDVP衍生物,荣昌生物采用三丙烯基三嗪类(Triallyl triazines)构建单载荷ADC,在其研发管线中也得到应用[18, 19]。此外,针对TCEP或DDT还原的非选择性,Byondis公司利用其专有的ByonShieLD®[20]和ByonFoLD®[11]技术平台对工程化的Cys和链间二硫键进行选择性还原,然后与含有-Mal的细胞毒性药物反应得到双载荷ADC (图4),但对其DAR值的明确还值得进一步研究。

 

图4. Byondis公司双载荷ADC的制备模式图(作者根据专利自行绘制)


针对抗体的链间二硫键的改造,除dfDVP类似物外,还有二溴哒嗪二酮(dibromo- pyridazinedione, diBrPD)衍生物。伦敦大学Vijay Chudasama课题组利用diBrPD-PhN3(-Tz)作为桥接试剂构建含有不同载荷和DAR值的ADC药物,利用该方法可获得同质性高、多样化的ADC (图5);同时,该方法具有一定的普适性,除对全长抗体进行偶联外,还可以应用到Fab’、Fc-偶联物的开发[21]。diBrPD衍生物较早见于ThioLogics公司,也是用于构建双载荷ADC,但其仅用于mAbs的偶联,未对应用范围做更多的扩展[22]

 

图5. diBrPD衍生物由于单/双载荷ADC的构建


与Cys类似,由丝氨酸转化而成的硒代半胱氨酸(Selenocysteine,Se-Cys)也可作为偶联位点进行ADC的构建[23]美国国立卫生研究院国家癌症研究所及合作团队以Trastuzumab为模板,通过分子生物学技术在其特定位置引入工程化的Cys (HC A114C)和Se-Cys (HC S396U)构建Thio-selenomab,使引入的Se-Cys与PNU-159682-EDA-Gly3-IAM(Iodoacetamide,碘乙酰胺)偶联[24],然后再将产物与MMAF-nc-MSODA偶联[25]得到双载荷ADC,经质谱表征,DARPNU-159682为1.9,DARMMAF为1.5 (图6左上);该双载荷ADC对HER2+的细胞系表现出选择性和有效的细胞毒性(图6左下),并表现出与偶联药物一致的双重作用机制:PNU-159682由于其DNA损伤活性导致S期细胞周期停滞,而MMAF同时抑制微管蛋白聚合并导致G2/M期细胞周期停滞(图6右)。尽管体外细胞毒性结果表明PNU-159682和MMAF的组合不会单独增强PNU-159682的效力,但ADC的双重机制特性可能在高度异质的体内肿瘤环境中仍具有治疗效用。

 

图6. 利用Cys和Se-Cys构建双载荷ADC及其活性、机制的研究


除工程化的Cys、Se-Cys以及链间二硫键外,法国分子生物物理中心Vincent Aucagne课题组以化学合成的第三代抗HER2亲和体(Affibody)的N-端Cys为反应位点,经过两步反应一次纯化可以在温和条件下(无离液剂,中性pH值)构建双载荷ADC,引入DM1和MMAE;与两种单偶联物的组合相比,双载荷ADC对HER2+的细胞系表现出更强的细胞毒性,表明具有强大的协同作用(图7)[26]

 

图7. 双载荷亲合体(Affibody)的构建及其活性评价


  02  


Unnatural Amino Acids (UAA)


除了对Cys进行修饰外,抗体的位点特异性偶联还可以通过基因密码子扩增技术引入非天然氨基酸(Unnatural Amino Acids, UAA)来实现,利用不同的正交对[正交氨酰-tRNA合成酶(aaRS) / tRNA]引入UAA,再与目的分子偶联构建ADC,该种偶联是可控和定量的,可生成具有均一DAR值、高效、稳定性和安全性高的ADC[27]


波士顿学院Abhishek Chatterjee课题组利用大肠杆菌色氨酸对(EcTrp)作为TGA密码子抑制剂,与其他已有的正交对相结合,开发出双UAA引入的三种新途径,利用该方法可以极佳的效率将两种不同的UAA特异性地引入到抗体中,随后用两种不同的细胞毒性有效载荷对其进行偶联[28]。利用EcTrp+EcLeu (TAG)[29]系统分别将5-HTP和LCA引入到Trastuzumab重链的121和198位,然后经一锅法将两种不同的细胞毒药物(Diazo-MMAF +DBCO-PNU-159682[30])偶联到抗体上(CRACR[31]+SPAAC,图8. A+B);分别用该方法构建的ADC对NCI-N87 (HER2受体高表达)和NCI-H520 (HER2受体低表达)细胞系进行初步细胞毒性研究,对NCI-N87的细胞毒性明显更高,证明其HER2依赖性的细胞杀伤;与MMAF相比,用PNU标记的ADC显示出显着更高的毒性(图8. C)。

 

图8. 利用基因密码子扩增技术构建双载荷ADC及其活性评价


为了能够减少正交对(aaRS/tRNA对)的使用,北京大学刘涛研究院课题组开发了新型UAA-pTAF和mTAF,在一个UAA引入两种正交反应基团(-N3 + -Tetrazine),可实现一锅化反应引入荧光基团、放射性同位素、细胞毒性药物等[32]。利用含有pTAF的HER2-scFv构建的scFv-MMAE-PEG40K,其在HER2+肿瘤模型(HCC1954)中对肿瘤生长表现出明显的抑制作用,而在scFv-MMAE处理组和PBS处理组中未观察到肿瘤生长抑制;在实验结束时切除肿瘤并称重,该结果也证明scFv-MMAE与PEG40K偶联后表现出优越的治疗效果(图9);此外,经scFv-MMAE-PEG40K治疗后没有观察到体重和肝功能的显着变化,表明其具有良好的生物相容性。虽然该方法构建的双载荷偶联物并没有完全消除肿瘤,但作者认为可以通过调整剂量和注射频率来改善抗肿瘤活性。

 

图9. 基于UAA-p/mTAF构建双载荷ADC类似物及其抗肿瘤活性的研究


除了单纯的利用UAA外,上海有机所王文远教授课题组通过组合的方法对工程化的Cys和对乙酰基苯丙氨酸(p-Acetyl-Phenylalanine)进行一锅法、连续反应构建双载荷ADC (图10)[33]。该策略使Trastuzumab通过不同的反应顺序与两种机制不同的细胞毒性药物结合,使新设计的ADC具有功能多样性,并有可能克服耐药性、提高治疗活性。该方法反应条件较为剧烈(pH 4,羟胺与羰基成肟),在实际生产中可能存在一定的问题。

 

图10. 双策略(Cys+UAA)构建双载荷ADC类似物


UAA虽然能实现定点均一的偶联,但由于其外源性的特征可能会使抗体诱导免疫原性[34];UAA的疏水性也会增加抗体聚集的风险[35]


  03  


Glycan remodeling and glycoconjugation

& Enzyme-assisted ligation


糖基化是抗体最重要的翻译后修饰之一,利用糖基化位点进行位点选择性修饰也是目前ADC构建的常用方法[36]


上海药物所黄蔚教授课题组开发了两种策略构建位点特异性的ADC,一种是通过endo-S2催化的一步糖工程合成糖基特异性ADC的化学酶法,另一种是通过配体导向的基于硫酯的酰基转移试剂的化学方法以无痕方式合成K248位点特异性ADC[37-39]。目前,该课题组利用上述技术优势,通过三种不同路线在糖基化位点(N297)和K248位点组装同质双载荷ADC (图11)[40]。A)首先通过endo-S2催化在糖基化位点引入MMAE/ MMAF,然后在存在FcBP接头-药物复合物的情况下在抗体的K248处偶联另一个载荷;B)首先在K248处偶联有效载荷,然后在糖基化位点进行偶联,但实验结果表明K248处的有效载荷在某种程度上影响endo-S2介导的转糖基活性,影响偶联;C)通过简单地将所有材料添加到反应混合物中,以一锅法同时在糖基化和K248位点组装两种不同的有效载荷,该条件下endo-S2的水解和转糖基活性被完全抑制,有效载荷在K248处的偶联效率也受到影响。最终,选择以路线A进行双载荷ADC的制备,所得ADC在稳定性及抗肿瘤活性方面有优秀的表现。

 图11. 双载荷ADC构建路线的优化


除N297位聚糖进行截短修饰外,酶辅助连接也是一种有效的位点特异性偶联策略。通过基因工程,人工诱导特定氨基酸序列在抗体中表达,这些序列可被某些酶识别,随后特定的氨基酸残基被酶修饰,以实现位点特异性结合。利用PNGase F (Peptide-N-Glycosidase F)对抗体进行去糖基化处理,使其暴露出295位谷氨酰胺(Q295),其可被微生物转谷氨酰胺酶(microbial transglutaminase,MTG)催化与含有氨基的底物反应,用于位点特异性的抗体修饰。


辉瑞Edmund Graziani课题组利用含有Q295和工程化Cys的抗体分步构建含有BODIPY和Cy5.5的荧光抗体;此外,该课题组利用Trastuzumab A114C经木瓜蛋白酶切割得到含有工程化Cys的Fab,经过初次还原氧化使引入的Cys暴露出来,与mcVC-PABC_Aur-0101偶联,其产物再次还原打开Fab间的二硫键,暴露出的巯基与mc_Aur-0131偶联,该产物在体外N87细胞中的IC50为37−43 ng/mL,表现出优异的细胞毒性[41]。上述方法构建双载荷ADC类似物使用不同的偶联位点,康奈尔大学Christopher A. Alabi课题组仅利用抗体中的Q295作为反应位点,经MTG酶催化将含有-N3和-Tetrazine的双功能底物引入Trastuzumab中,通过正交反应一锅法引入MMAE和聚乙二醇(PEG)侧链,该类型的双载荷ADC药物在SKOV3细胞中表现出强大的体外活性(图12)[42]

 图12. MTG酶催化一锅法制备双载荷ADC类似物


如何利用抗体Q295位点构建真正意义上的双载荷ADC成为目前研究的难点,德克萨斯大学休斯顿健康科学中心Kyoji Tsuchikama课题组通过引入含有点击化学反应基团的三臂Linker,构建含有MMAE+MMAF (4+2, DAR值)的双载荷ADC (图13. a),同时也构建了DAR值为2+2、2+4的双载荷ADC,该类型的双载荷ADC的体内抗肿瘤活性要比单药联用效果好(图13. b-e),可能对难治性、复发性乳腺癌或其他肿瘤有一定的治疗优势[43]

 图13. 利用三臂Linker构建双载荷ADC及其活性评价


同样利用酶辅助偶联的方法,比勒费尔德大学Kristian M. Müller课题组及其合作者利用甲酰甘氨酸生成酶(Formylglycine-Generating Enzyme, FGE[44])在scFv425-Fc上引入醛基,将含有双反应基团的Linker引入到scFv中,经后续反应得到含有PEGylation修饰和MMAE的双载荷ADC类似物,其在人鳞癌来源的A431细胞中展现出亚纳摩尔细胞毒性(图14左)[45]弗罗茨瓦夫大学Jacek Otlewski课题组利用人成纤维细胞生长因子2 (human fibroblast growth factor 2, FGF2)作为靶向蛋白进行偶联,而不是对抗体进行改造;利用分选酶-A (Sortase-A)介导的连接反应在FGF2上引入MMAE和α-鹅膏菌素(α-AMTN),该种双载荷偶联物比单载荷偶联物对成纤维细胞生长因子受体阳性细胞系表现出更高的细胞毒效力(图14右)[46]

 图14. 酶辅助偶联方法构建双载荷ADC类似物
总结起来,双载荷ADC及其类似物的构建:一种是利用两个反应位点分步进行构建;另一种就是利用单一反应位点引入分支Linker,再通过点击化学组装细胞毒性药物。虽然双载荷ADC构建方法目前已经较为成熟,但其药动药代方面的方面任重道远。


免责声明:本文仅作信息交流之目的,文中观点不代表个人立场,亦不代表个人支持或反对文中观点。本文并非治疗方案推荐。如需获得治疗方案指导,请前往正规医院就诊。
由于时间仓促,若有纰漏/不足,欢迎各位批评指正(dyc21@mails.tsinghua.edu.cn),谢谢!


 主要参考文献 


1. Fu, Z., et al., Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther, 2022. 7(1): p. 93.

2. Mair, M.J., et al., Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol, 2023.

3. Ackerman, S.E., et al., Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nature Cancer, 2021. 2(1): p. 18-33.

4. He, L., et al., Immune Modulating Antibody-Drug Conjugate (IM-ADC) for Cancer Immunotherapy. J Med Chem, 2021. 64(21): p. 15716-15726.

5. Marei, H., et al., Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature, 2022. 610(7930): p. 182-189.

6. Banik, S.M., et al., Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 2020. 584(7820): p. 291-297.

7. Walsh, S.J., et al., Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev, 2021. 50(2): p. 1305-1353.

8. Hoyle, C.E. and C.N. Bowman, Thiol–ene click chemistry. Angewandte Chemie International Edition, 2010. 49(9): p. 1540-1573.

9. Junutula, J.R., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nature biotechnology, 2008. 26(8): p. 925-932.

10. Das, S., et al., Novel IgG1 Cysteine Insertion Sites Enable Site-Specific Conjugation and Precise Control of Drug to Antibody Ratio, in Antibody Engineering & Therapeutics Conference. December 5, 2022.

11. Coumans, R.G.E., Dual conjugation process for preparing antibody-drug conjugates. 2018, Synthon Biopharmaceuticals B.V.

12. Levengood, M.R., et al., Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody-Drug Conjugates. Angew Chem Int Ed Engl, 2017. 56(3): p. 733-737.

13. Kumar, A., et al., Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg Med Chem Lett, 2018. 28(23-24): p. 3617-3621.

14. Walsh, S.J., et al., General dual functionalisation of biomacromolecules via a cysteine bridging strategy. Org Biomol Chem, 2020. 18(22): p. 4224-4230.

15. Handula, M., K.T. Chen, and Y. Seimbille, IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules, 2021. 26(15).

16. Ramsubhag, R.R. and G.B. Dudley, Orthogonal dual-click diyne for CuAAC and/or SPAAC couplings. Org Biomol Chem, 2016. 14(22): p. 5028-31.

17. Hanby, A.R., et al., Antibody dual-functionalisation enabled through a modular divinylpyrimidine disulfide rebridging strategy. Chem Commun (Camb), 2022. 58(67): p. 9401-9404.

18. Zhang, S., et al., A novel anti-DR5 antibody-drug conjugate possesses a high-potential therapeutic efficacy for leukemia and solid tumors. Theranostics, 2019. 9(18): p. 5412.

19. Huang, C., et al., Covalent linkers in antibody-drug conjugates and methods of making and using the same. 2018, RC Biotechnologies, Inc.

20. Coumans, R.G.E. and H.J. Spijker, Selective reduction of cysteine-engineered antibodies. 2017, Synthon Biopharmaceuticals B.V.

21. Thoreau, F., et al., Enabling the formation of native mAb, Fab' and Fc-conjugates using a bis-disulfide bridging reagent to achieve tunable payload-to-antibody ratios (PARs). Chem Sci, 2023. 14(14): p. 3752-3762.

22. Maruani, A., et al., A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun, 2015. 6: p. 6645.

23. Nilchan, N., et al., Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther, 2019. 2(4): p. 71-78.

24. Li, X., et al., Stable and potent selenomab-drug conjugates. Cell chemical biology, 2017. 24(4): p. 433-442. e6.

25. Tumey, L.N., et al., Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. The AAPS journal, 2017. 19: p. 1123-1135.

26. Novak, A., et al., N-terminal cysteine as minimalistic handle for dual, site-selective bioconjugation: application to an anti-HER2 affibody reveals synergy of two conjugated drugs. 2023.

27. Manandhar, M., E. Chun, and F.E. Romesberg, Genetic code expansion: inception, development, commercialization. Journal of the American Chemical Society, 2021. 143(13): p. 4859-4878.

28. Osgood, A.O., et al., An Efficient Opal-Suppressor Tryptophanyl Pair Creates New Routes for Simultaneously Incorporating up to Three Distinct Noncanonical Amino Acids into Proteins in Mammalian Cells. Angew Chem Int Ed Engl, 2023. 62(19): p. e202219269.

29. Zheng, Y., et al., Expanding the scope of single-and double-noncanonical amino acid mutagenesis in mammalian cells using orthogonal polyspecific leucyl-tRNA synthetases. Biochemistry, 2018. 57(4): p. 441-445.

30. Holte, D., et al., Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg Med Chem Lett, 2020. 30(24): p. 127640.

31. Addy, P.S., et al., A chemoselective rapid azo-coupling reaction (CRACR) for unclickable bioconjugation. Journal of the American Chemical Society, 2017. 139(34): p. 11670-11673.

32. Wang, Y., et al., Noncanonical amino acids as doubly bio-orthogonal handles for one-pot preparation of protein multiconjugates. Nat Commun, 2023. 14(1): p. 974.

33. Zhang, L., et al., A Simple and Efficient Method to Generate Dual Site-Specific Conjugation ADCs with Cysteine Residue and an Unnatural Amino Acid. Bioconjug Chem, 2021. 32(6): p. 1094-1104.

34. Hallam, T.J. and V.V. Smider, Unnatural amino acids in novel antibody conjugates. Future Med Chem, 2014. 6(11): p. 1309-24.

35. Hallam, T.J., et al., Antibody conjugates with unnatural amino acids. Mol Pharm, 2015. 12(6): p. 1848-62.

36. Li, C., et al., Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its Fcgamma Receptor Affinity and ADCC Activity. J Am Chem Soc, 2021. 143(20): p. 7828-7838.

37. Tang, F., L.X. Wang, and W. Huang, Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody-drug conjugates. Nat Protoc, 2017. 12(8): p. 1702-1721.

38. Shi, W., et al., One-step synthesis of site-specific antibody-drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates. Acta Pharm Sin B, 2022. 12(5): p. 2417-2428.

39. Tang, F., et al., One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates. Org Biomol Chem, 2016. 14(40): p. 9501-9518.

40. Tang, C., et al., One-Pot Assembly of Dual-Site-Specific Antibody-Drug Conjugates via Glycan Remodeling and Affinity-Directed Traceless Conjugation. Bioconjug Chem, 2023.

41. Puthenveetil, S., et al., Development of Solid-Phase Site-Specific Conjugation and Its Application toward Generation of Dual Labeled Antibody and Fab Drug Conjugates. Bioconjug Chem, 2016. 27(4): p. 1030-9.

42. Walker, J.A., et al., Substrate Design Enables Heterobifunctional, Dual "Click" Antibody Modification via Microbial Transglutaminase. Bioconjug Chem, 2019. 30(9): p. 2452-2457.

43. Yamazaki, C.M., et al., Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun, 2021. 12(1): p. 3528.

44. Wu, Y., et al., Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew Chem Int Ed Engl, 2023. 62(7): p. e202212053.

45. Karsten, L., et al., Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci, 2022. 23(5).

46. Krzyscik, M.A., L. Opalinski, and J. Otlewski, Novel Method for Preparation of Site-Specific, Stoichiometric-Controlled Dual Warhead Conjugate of FGF2 via Dimerization Employing Sortase A-Mediated Ligation. Mol Pharm, 2019. 16(8): p. 3588-3599.


  BiG近期活动   



9月7-8日,上海;BiG将召开XDC专题研讨会!邀请行业内研发,临床和商业运营的专家英才,齐聚一堂畅谈中国ADC药物的研发,临床,出海的成功案例和经验教训。


参会注册(免费,审核制)
共建Biomedical创新生态圈!如何加入BiG会员?
继续滑动看下一个
BiG生物创新社
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存